

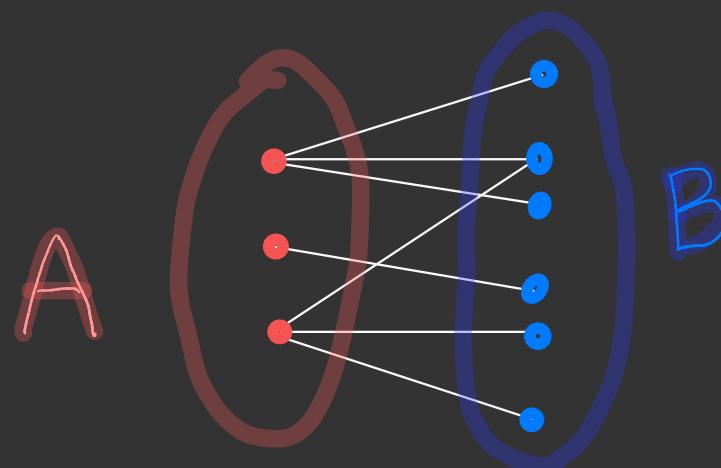
Bipartite graphs

and

Matchings

Definition: A bipartite graph is a graph G such that the set of its vertices can be partitioned into two disjoint parts $V(G) = A \sqcup B$ such that every edge of G connects a vertex in A with a vertex in B .

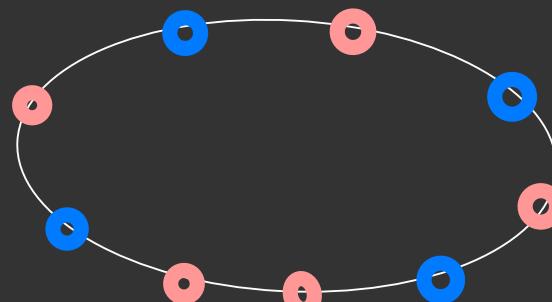
Example:



Lemma: A graph G is bipartite if and only if it does not contain a cycle of odd length.

Proof:

\Rightarrow Suppose that G contains a cycle C of odd length:



Then to subsequent vertices of C belong to the same part (A or B). \blacktriangleleft

\Leftarrow Suppose that G contains no odd cycles. We will show that G is bipartite.

Let $v, w \in V(G)$ be two vertices

Claim: G has no odd cycles \Rightarrow all pathes between v and w has the same length mod 2

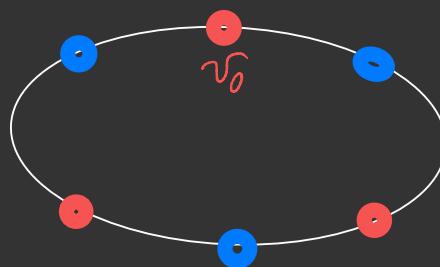
Exercise: prove this claim.

Fix $v_0 \in V(G)$.

We define $A, B \subset V(G)$ as follows:

$A :=$ the set of vertices with even distance from v_0

$B :=$ the set of vertices with odd distance from v_0



No edges of G go between A and A or between B and B .

Is it true that $V(G) = A \sqcup B$?

No.

$A \cup B$ = connected component of G containing v_0

Repeat same procedure for all connected components of G

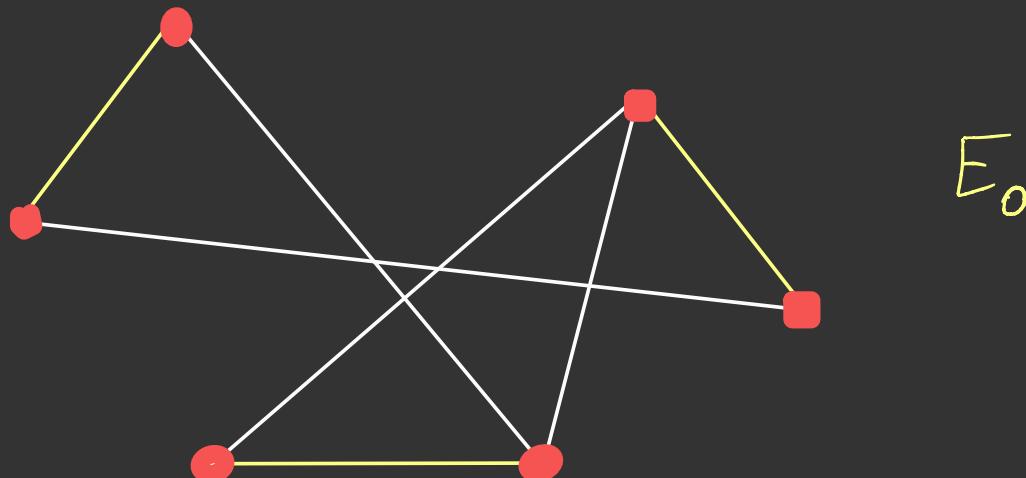
Definition: Let $G = (V, E)$ be a graph.

A subset $E_0 \subseteq E$ of edges such that

$$e \cap f = \emptyset \quad \text{for all } e, f \in E_0$$

is called a matching in G .

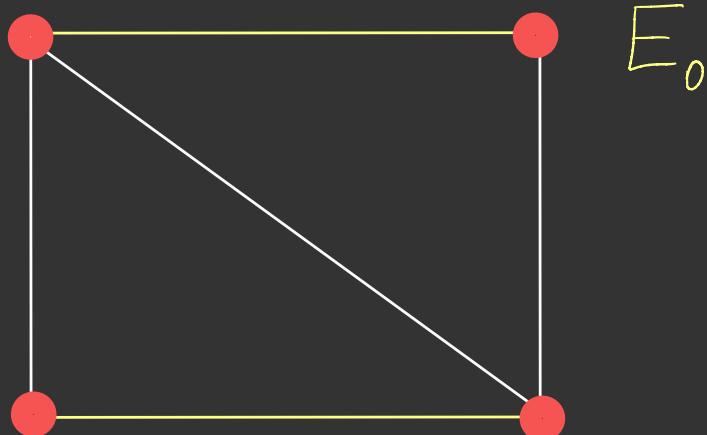
Example:



Definition: A perfect matching is matching that covers all the vertices of a graph.

That is each vertex is adjacent to exactly one edge of the matching

Example:



Matchings in bipartite graphs

Let G be a bipartite graph

such that $V(G) = A \sqcup B$ is a partition.

Does G have a perfect matching?

(Obvious) necessary conditions:

$$\textcircled{1} \quad |A| = |B|$$

$$\textcircled{2} \quad \text{Let } X \subseteq A \text{ be a subset.}$$

Define

$$Y(X) := \{ y \in B \mid y \text{ is connected to some vertex in } X \}$$

A necessary condition for the existence of a perfect matching:

$$|Y(X)| \geq |X|.$$

Theorem (König - Hall)

Let G be a bipartite graph with two parts A and B .

Suppose that the following two conditions hold:

① $|A| = |B|$

② For each set $X \subseteq A$ the subset

$Y(X) := \{ y \in B \mid y \text{ is connected to some vertex in } X \}$
satisfies $|Y(X)| \geq |X|$.

Then G has a perfect matching.

Proof:

We say that a bipartite graph G is "good" if it satisfies conditions ① and ②.

Suppose that a bipartite graph G is good.

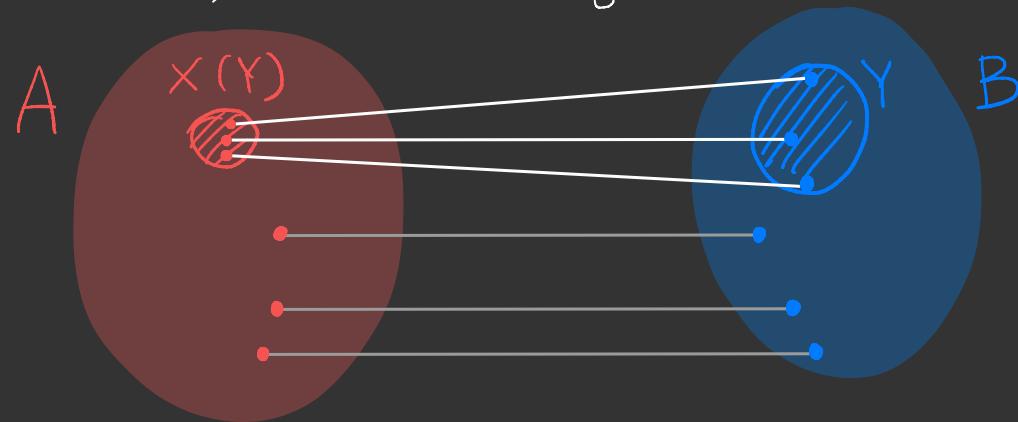
Is it true that every subset $Y \subseteq B$ is connected to at least $|Y|$ vertices in A ?

In other words, is the condition to be good symmetric with respect to the parts A and B ?

We claim that yes.

Indeed, suppose that G is good and there exists a subset $Y \subseteq B$ which is connected to less than $|Y|$ vertices in A .

We denote by $X(Y)$ the set of all vertices connected to Y .



Note that the set $A \setminus X(Y)$ is connected only to the vertices in the set $B \setminus Y$.

By our assumption $|Y| > |X(Y)|$ and therefore

$$|B \setminus Y| < |A \setminus X(Y)|.$$

This contradicts our assumption that G is good.

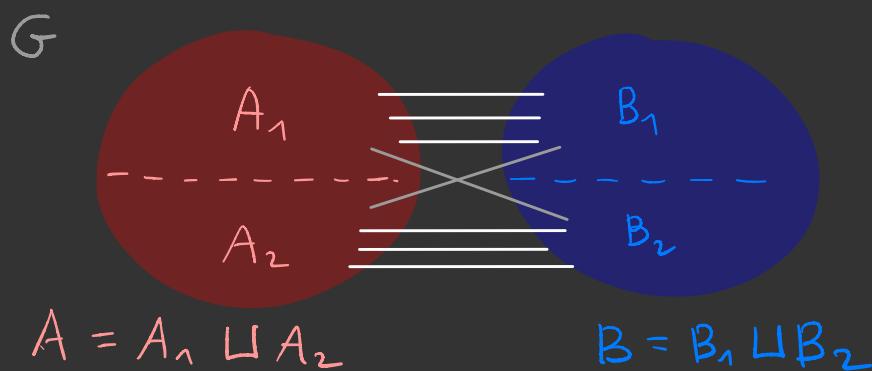
We have to prove that every good bipartite graph G has a perfect matching.

We will prove this by induction on the number of vertices.

For a bipartite graph with 2 vertices the statement is obvious.

We will prove the following:

If a good graph has more then 2 vertices (♥)
it can be divided into two good graphs:



$G_1 :=$ subgraph induced by $A_1 \cup B_1$

$G_2 :=$ subgraph induced by $A_2 \cup B_2$

First try:

Let $a \in A$ and $b \in B$ be two vertices connected by an edge.

Set $A_1 := \{a\}$, $B_1 := \{b\}$ and

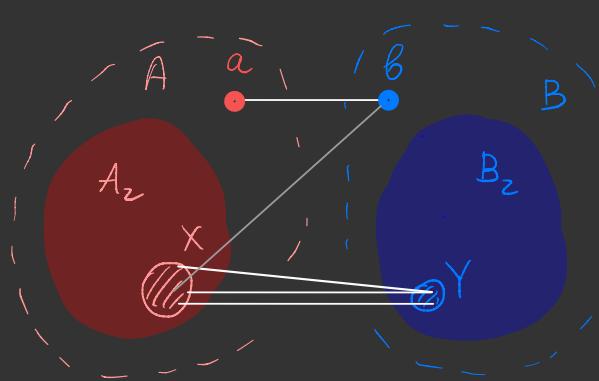
$A_2 := A \setminus \{a\}$ $B_2 := B \setminus \{b\}$.

G_1 := subgraph of G induced by $A_1 \cup B_1$,

G_2 := subgraph of G induced by $A_2 \cup B_2$.

The subgraph G_1 is obviously good.

Is G_2 also good?



$$\begin{aligned}
 |X| &> |Y| \\
 |X| &\leq |Y \cup \{b\}| \\
 \Downarrow \\
 |X| &= |Y| + 1
 \end{aligned}$$

Suppose that the graph G_2 is not good and the set A_2 contains a subset X such that the set Y of all vertices in B_2 connected to X contains less than $|X|$ elements. ☺

Since G is good, we know that the number of vertices in B connected to X is exactly $|X|$.

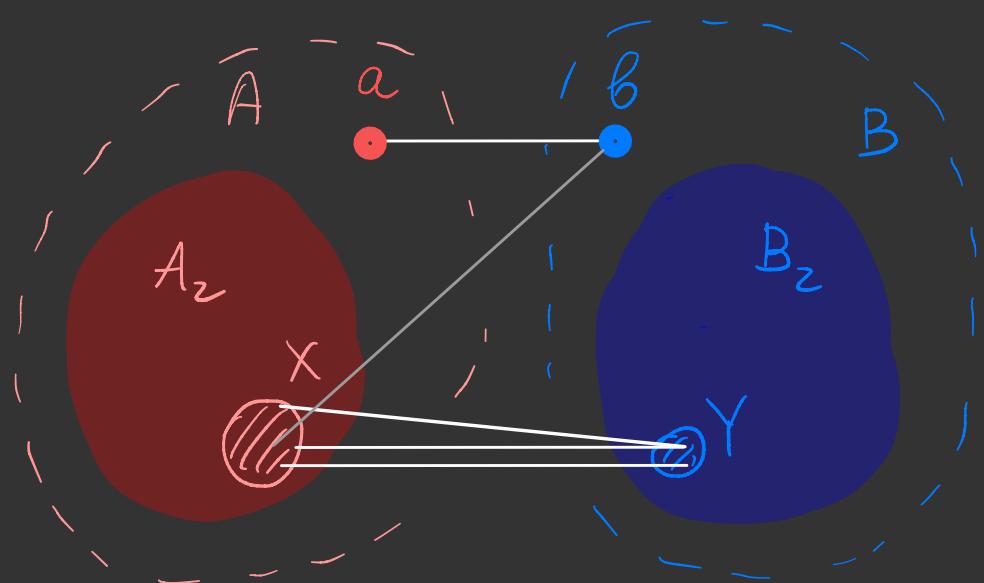
This is possible if and only if $Y(X) = Y \cup \{b\}$.

In this case $|X| = |Y \cup \{b\}|$.

We define

$$\tilde{A}_1 := X$$

$$\tilde{B}_1 := Y \cup \{b\}$$



Vertices of \tilde{B}_2 are connected only to the vertices of \tilde{A}_2 .

Since the graph G is good, every subset $\tilde{Y} \subseteq \tilde{B}_2$ is connected to at least $|\tilde{Y}|$ vertices.

Also $|\tilde{B}_2| = |B| - |Y(X)| = |A| - |X| = |\tilde{A}_2|$.

Therefore, the graph \tilde{G}_2 is also good.

Note that $X \subsetneq A$.

This finishes the proof of the statement (❤)

and also the proof of the theorem by induction on the number of vertices

Theorem: Let G be a non-trivial regular bipartite graph, that is all vertices of G have the same non-zero degree. Then G has a perfect matching.

Proof:

We will show that such a graph G is good.

We will check two conditions of "goodness":

① Both parts have the same number of vertices.

Suppose that G has N edges and each vertex has degree M . Then each bi-part has $\frac{2N}{2M}$ vertices.

② Let us check the second condition.

Suppose that this condition is false.

Then there exists a subset $X \subseteq A$ such that $|Y(X)| < |X|$.

In a subgraph induced by $X \sqcup Y(X)$ the sum of degrees of vertices in X equals the sum of degrees of vertices in $Y(X)$.

Then $Y(X)$ contains a vertex of degree bigger than M . This contradicts the regularity of G . \blacksquare